3.1.72 \(\int \frac {(d+c d x) (a+b \tanh ^{-1}(c x))^2}{x} \, dx\) [72]

Optimal. Leaf size=191 \[ d \left (a+b \tanh ^{-1}(c x)\right )^2+c d x \left (a+b \tanh ^{-1}(c x)\right )^2+2 d \left (a+b \tanh ^{-1}(c x)\right )^2 \tanh ^{-1}\left (1-\frac {2}{1-c x}\right )-2 b d \left (a+b \tanh ^{-1}(c x)\right ) \log \left (\frac {2}{1-c x}\right )-b^2 d \text {PolyLog}\left (2,1-\frac {2}{1-c x}\right )-b d \left (a+b \tanh ^{-1}(c x)\right ) \text {PolyLog}\left (2,1-\frac {2}{1-c x}\right )+b d \left (a+b \tanh ^{-1}(c x)\right ) \text {PolyLog}\left (2,-1+\frac {2}{1-c x}\right )+\frac {1}{2} b^2 d \text {PolyLog}\left (3,1-\frac {2}{1-c x}\right )-\frac {1}{2} b^2 d \text {PolyLog}\left (3,-1+\frac {2}{1-c x}\right ) \]

[Out]

d*(a+b*arctanh(c*x))^2+c*d*x*(a+b*arctanh(c*x))^2-2*d*(a+b*arctanh(c*x))^2*arctanh(-1+2/(-c*x+1))-2*b*d*(a+b*a
rctanh(c*x))*ln(2/(-c*x+1))-b^2*d*polylog(2,1-2/(-c*x+1))-b*d*(a+b*arctanh(c*x))*polylog(2,1-2/(-c*x+1))+b*d*(
a+b*arctanh(c*x))*polylog(2,-1+2/(-c*x+1))+1/2*b^2*d*polylog(3,1-2/(-c*x+1))-1/2*b^2*d*polylog(3,-1+2/(-c*x+1)
)

________________________________________________________________________________________

Rubi [A]
time = 0.33, antiderivative size = 191, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 11, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.550, Rules used = {6087, 6021, 6131, 6055, 2449, 2352, 6033, 6199, 6095, 6205, 6745} \begin {gather*} -b d \text {Li}_2\left (1-\frac {2}{1-c x}\right ) \left (a+b \tanh ^{-1}(c x)\right )+b d \text {Li}_2\left (\frac {2}{1-c x}-1\right ) \left (a+b \tanh ^{-1}(c x)\right )+d \left (a+b \tanh ^{-1}(c x)\right )^2+c d x \left (a+b \tanh ^{-1}(c x)\right )^2+2 d \tanh ^{-1}\left (1-\frac {2}{1-c x}\right ) \left (a+b \tanh ^{-1}(c x)\right )^2-2 b d \log \left (\frac {2}{1-c x}\right ) \left (a+b \tanh ^{-1}(c x)\right )+b^2 (-d) \text {Li}_2\left (1-\frac {2}{1-c x}\right )+\frac {1}{2} b^2 d \text {Li}_3\left (1-\frac {2}{1-c x}\right )-\frac {1}{2} b^2 d \text {Li}_3\left (\frac {2}{1-c x}-1\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((d + c*d*x)*(a + b*ArcTanh[c*x])^2)/x,x]

[Out]

d*(a + b*ArcTanh[c*x])^2 + c*d*x*(a + b*ArcTanh[c*x])^2 + 2*d*(a + b*ArcTanh[c*x])^2*ArcTanh[1 - 2/(1 - c*x)]
- 2*b*d*(a + b*ArcTanh[c*x])*Log[2/(1 - c*x)] - b^2*d*PolyLog[2, 1 - 2/(1 - c*x)] - b*d*(a + b*ArcTanh[c*x])*P
olyLog[2, 1 - 2/(1 - c*x)] + b*d*(a + b*ArcTanh[c*x])*PolyLog[2, -1 + 2/(1 - c*x)] + (b^2*d*PolyLog[3, 1 - 2/(
1 - c*x)])/2 - (b^2*d*PolyLog[3, -1 + 2/(1 - c*x)])/2

Rule 2352

Int[Log[(c_.)*(x_)]/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[(-e^(-1))*PolyLog[2, 1 - c*x], x] /; FreeQ[{c, d, e
}, x] && EqQ[e + c*d, 0]

Rule 2449

Int[Log[(c_.)/((d_) + (e_.)*(x_))]/((f_) + (g_.)*(x_)^2), x_Symbol] :> Dist[-e/g, Subst[Int[Log[2*d*x]/(1 - 2*
d*x), x], x, 1/(d + e*x)], x] /; FreeQ[{c, d, e, f, g}, x] && EqQ[c, 2*d] && EqQ[e^2*f + d^2*g, 0]

Rule 6021

Int[((a_.) + ArcTanh[(c_.)*(x_)^(n_.)]*(b_.))^(p_.), x_Symbol] :> Simp[x*(a + b*ArcTanh[c*x^n])^p, x] - Dist[b
*c*n*p, Int[x^n*((a + b*ArcTanh[c*x^n])^(p - 1)/(1 - c^2*x^(2*n))), x], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[p
, 0] && (EqQ[n, 1] || EqQ[p, 1])

Rule 6033

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_)/(x_), x_Symbol] :> Simp[2*(a + b*ArcTanh[c*x])^p*ArcTanh[1 - 2/(1
 - c*x)], x] - Dist[2*b*c*p, Int[(a + b*ArcTanh[c*x])^(p - 1)*(ArcTanh[1 - 2/(1 - c*x)]/(1 - c^2*x^2)), x], x]
 /; FreeQ[{a, b, c}, x] && IGtQ[p, 1]

Rule 6055

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[(-(a + b*ArcTanh[c*x])^p)
*(Log[2/(1 + e*(x/d))]/e), x] + Dist[b*c*(p/e), Int[(a + b*ArcTanh[c*x])^(p - 1)*(Log[2/(1 + e*(x/d))]/(1 - c^
2*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 - e^2, 0]

Rule 6087

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_))^(q_.), x_Symbol] :> Int[E
xpandIntegrand[(a + b*ArcTanh[c*x])^p, (f*x)^m*(d + e*x)^q, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && IGtQ[
p, 0] && IntegerQ[q] && (GtQ[q, 0] || NeQ[a, 0] || IntegerQ[m])

Rule 6095

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(a + b*ArcTanh[c*x])^(p
 + 1)/(b*c*d*(p + 1)), x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && NeQ[p, -1]

Rule 6131

Int[(((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*(x_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(a + b*ArcTanh[c
*x])^(p + 1)/(b*e*(p + 1)), x] + Dist[1/(c*d), Int[(a + b*ArcTanh[c*x])^p/(1 - c*x), x], x] /; FreeQ[{a, b, c,
 d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0]

Rule 6199

Int[(ArcTanh[u_]*((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Dist[1/2, Int[
Log[1 + u]*((a + b*ArcTanh[c*x])^p/(d + e*x^2)), x], x] - Dist[1/2, Int[Log[1 - u]*((a + b*ArcTanh[c*x])^p/(d
+ e*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ[u^2 - (1 - 2/(1 - c*x
))^2, 0]

Rule 6205

Int[(Log[u_]*((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(-(a + b*ArcT
anh[c*x])^p)*(PolyLog[2, 1 - u]/(2*c*d)), x] + Dist[b*(p/2), Int[(a + b*ArcTanh[c*x])^(p - 1)*(PolyLog[2, 1 -
u]/(d + e*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ[(1 - u)^2 - (1
- 2/(1 - c*x))^2, 0]

Rule 6745

Int[(u_)*PolyLog[n_, v_], x_Symbol] :> With[{w = DerivativeDivides[v, u*v, x]}, Simp[w*PolyLog[n + 1, v], x] /
;  !FalseQ[w]] /; FreeQ[n, x]

Rubi steps

\begin {align*} \int \frac {(d+c d x) \left (a+b \tanh ^{-1}(c x)\right )^2}{x} \, dx &=\int \left (c d \left (a+b \tanh ^{-1}(c x)\right )^2+\frac {d \left (a+b \tanh ^{-1}(c x)\right )^2}{x}\right ) \, dx\\ &=d \int \frac {\left (a+b \tanh ^{-1}(c x)\right )^2}{x} \, dx+(c d) \int \left (a+b \tanh ^{-1}(c x)\right )^2 \, dx\\ &=c d x \left (a+b \tanh ^{-1}(c x)\right )^2+2 d \left (a+b \tanh ^{-1}(c x)\right )^2 \tanh ^{-1}\left (1-\frac {2}{1-c x}\right )-(4 b c d) \int \frac {\left (a+b \tanh ^{-1}(c x)\right ) \tanh ^{-1}\left (1-\frac {2}{1-c x}\right )}{1-c^2 x^2} \, dx-\left (2 b c^2 d\right ) \int \frac {x \left (a+b \tanh ^{-1}(c x)\right )}{1-c^2 x^2} \, dx\\ &=d \left (a+b \tanh ^{-1}(c x)\right )^2+c d x \left (a+b \tanh ^{-1}(c x)\right )^2+2 d \left (a+b \tanh ^{-1}(c x)\right )^2 \tanh ^{-1}\left (1-\frac {2}{1-c x}\right )-(2 b c d) \int \frac {a+b \tanh ^{-1}(c x)}{1-c x} \, dx+(2 b c d) \int \frac {\left (a+b \tanh ^{-1}(c x)\right ) \log \left (\frac {2}{1-c x}\right )}{1-c^2 x^2} \, dx-(2 b c d) \int \frac {\left (a+b \tanh ^{-1}(c x)\right ) \log \left (2-\frac {2}{1-c x}\right )}{1-c^2 x^2} \, dx\\ &=d \left (a+b \tanh ^{-1}(c x)\right )^2+c d x \left (a+b \tanh ^{-1}(c x)\right )^2+2 d \left (a+b \tanh ^{-1}(c x)\right )^2 \tanh ^{-1}\left (1-\frac {2}{1-c x}\right )-2 b d \left (a+b \tanh ^{-1}(c x)\right ) \log \left (\frac {2}{1-c x}\right )-b d \left (a+b \tanh ^{-1}(c x)\right ) \text {Li}_2\left (1-\frac {2}{1-c x}\right )+b d \left (a+b \tanh ^{-1}(c x)\right ) \text {Li}_2\left (-1+\frac {2}{1-c x}\right )+\left (b^2 c d\right ) \int \frac {\text {Li}_2\left (1-\frac {2}{1-c x}\right )}{1-c^2 x^2} \, dx-\left (b^2 c d\right ) \int \frac {\text {Li}_2\left (-1+\frac {2}{1-c x}\right )}{1-c^2 x^2} \, dx+\left (2 b^2 c d\right ) \int \frac {\log \left (\frac {2}{1-c x}\right )}{1-c^2 x^2} \, dx\\ &=d \left (a+b \tanh ^{-1}(c x)\right )^2+c d x \left (a+b \tanh ^{-1}(c x)\right )^2+2 d \left (a+b \tanh ^{-1}(c x)\right )^2 \tanh ^{-1}\left (1-\frac {2}{1-c x}\right )-2 b d \left (a+b \tanh ^{-1}(c x)\right ) \log \left (\frac {2}{1-c x}\right )-b d \left (a+b \tanh ^{-1}(c x)\right ) \text {Li}_2\left (1-\frac {2}{1-c x}\right )+b d \left (a+b \tanh ^{-1}(c x)\right ) \text {Li}_2\left (-1+\frac {2}{1-c x}\right )+\frac {1}{2} b^2 d \text {Li}_3\left (1-\frac {2}{1-c x}\right )-\frac {1}{2} b^2 d \text {Li}_3\left (-1+\frac {2}{1-c x}\right )-\left (2 b^2 d\right ) \text {Subst}\left (\int \frac {\log (2 x)}{1-2 x} \, dx,x,\frac {1}{1-c x}\right )\\ &=d \left (a+b \tanh ^{-1}(c x)\right )^2+c d x \left (a+b \tanh ^{-1}(c x)\right )^2+2 d \left (a+b \tanh ^{-1}(c x)\right )^2 \tanh ^{-1}\left (1-\frac {2}{1-c x}\right )-2 b d \left (a+b \tanh ^{-1}(c x)\right ) \log \left (\frac {2}{1-c x}\right )-b^2 d \text {Li}_2\left (1-\frac {2}{1-c x}\right )-b d \left (a+b \tanh ^{-1}(c x)\right ) \text {Li}_2\left (1-\frac {2}{1-c x}\right )+b d \left (a+b \tanh ^{-1}(c x)\right ) \text {Li}_2\left (-1+\frac {2}{1-c x}\right )+\frac {1}{2} b^2 d \text {Li}_3\left (1-\frac {2}{1-c x}\right )-\frac {1}{2} b^2 d \text {Li}_3\left (-1+\frac {2}{1-c x}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 0.29, size = 228, normalized size = 1.19 \begin {gather*} d \left (a^2 c x+a^2 \log (c x)+a b \left (2 c x \tanh ^{-1}(c x)+\log \left (1-c^2 x^2\right )\right )+b^2 \left (\tanh ^{-1}(c x) \left ((-1+c x) \tanh ^{-1}(c x)-2 \log \left (1+e^{-2 \tanh ^{-1}(c x)}\right )\right )+\text {PolyLog}\left (2,-e^{-2 \tanh ^{-1}(c x)}\right )\right )+a b (-\text {PolyLog}(2,-c x)+\text {PolyLog}(2,c x))+b^2 \left (\frac {i \pi ^3}{24}-\frac {2}{3} \tanh ^{-1}(c x)^3-\tanh ^{-1}(c x)^2 \log \left (1+e^{-2 \tanh ^{-1}(c x)}\right )+\tanh ^{-1}(c x)^2 \log \left (1-e^{2 \tanh ^{-1}(c x)}\right )+\tanh ^{-1}(c x) \text {PolyLog}\left (2,-e^{-2 \tanh ^{-1}(c x)}\right )+\tanh ^{-1}(c x) \text {PolyLog}\left (2,e^{2 \tanh ^{-1}(c x)}\right )+\frac {1}{2} \text {PolyLog}\left (3,-e^{-2 \tanh ^{-1}(c x)}\right )-\frac {1}{2} \text {PolyLog}\left (3,e^{2 \tanh ^{-1}(c x)}\right )\right )\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((d + c*d*x)*(a + b*ArcTanh[c*x])^2)/x,x]

[Out]

d*(a^2*c*x + a^2*Log[c*x] + a*b*(2*c*x*ArcTanh[c*x] + Log[1 - c^2*x^2]) + b^2*(ArcTanh[c*x]*((-1 + c*x)*ArcTan
h[c*x] - 2*Log[1 + E^(-2*ArcTanh[c*x])]) + PolyLog[2, -E^(-2*ArcTanh[c*x])]) + a*b*(-PolyLog[2, -(c*x)] + Poly
Log[2, c*x]) + b^2*((I/24)*Pi^3 - (2*ArcTanh[c*x]^3)/3 - ArcTanh[c*x]^2*Log[1 + E^(-2*ArcTanh[c*x])] + ArcTanh
[c*x]^2*Log[1 - E^(2*ArcTanh[c*x])] + ArcTanh[c*x]*PolyLog[2, -E^(-2*ArcTanh[c*x])] + ArcTanh[c*x]*PolyLog[2,
E^(2*ArcTanh[c*x])] + PolyLog[3, -E^(-2*ArcTanh[c*x])]/2 - PolyLog[3, E^(2*ArcTanh[c*x])]/2))

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 2.64, size = 3644, normalized size = 19.08

method result size
derivativedivides \(\text {Expression too large to display}\) \(3644\)
default \(\text {Expression too large to display}\) \(3644\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*d*x+d)*(a+b*arctanh(c*x))^2/x,x,method=_RETURNVERBOSE)

[Out]

2*d*a*b*arctanh(c*x)*c*x+d*a*b*ln(c*x-1)-1/4*I*d*b^2*Pi*csgn(I*((c*x+1)^2/(-c^2*x^2+1)-1)/(1+(c*x+1)^2/(-c^2*x
^2+1)))^3*polylog(2,-(c*x+1)^2/(-c^2*x^2+1))+1/2*I*d*b^2*Pi*csgn(I*((c*x+1)^2/(-c^2*x^2+1)-1)/(1+(c*x+1)^2/(-c
^2*x^2+1)))^3*arctanh(c*x)*ln(1-I*(c*x+1)/(-c^2*x^2+1)^(1/2))+1/2*I*d*b^2*Pi*csgn(I*((c*x+1)^2/(-c^2*x^2+1)-1)
/(1+(c*x+1)^2/(-c^2*x^2+1)))^3*arctanh(c*x)*ln(1+I*(c*x+1)/(-c^2*x^2+1)^(1/2))+d*b^2*arctanh(c*x)^2*c*x+1/4*I*
d*b^2*Pi*csgn(I/(1+(c*x+1)^2/(-c^2*x^2+1)))*csgn(I*((c*x+1)^2/(-c^2*x^2+1)-1)/(1+(c*x+1)^2/(-c^2*x^2+1)))^2*po
lylog(2,-(c*x+1)^2/(-c^2*x^2+1))-1/2*I*d*b^2*Pi*csgn(I/(1+(c*x+1)^2/(-c^2*x^2+1)))*csgn(I*((c*x+1)^2/(-c^2*x^2
+1)-1)/(1+(c*x+1)^2/(-c^2*x^2+1)))^2*dilog(1-I*(c*x+1)/(-c^2*x^2+1)^(1/2))-1/2*I*d*b^2*Pi*csgn(I/(1+(c*x+1)^2/
(-c^2*x^2+1)))*csgn(I*((c*x+1)^2/(-c^2*x^2+1)-1)/(1+(c*x+1)^2/(-c^2*x^2+1)))^2*dilog(1+I*(c*x+1)/(-c^2*x^2+1)^
(1/2))+d*a*b*ln(c*x+1)-1/2*I*d*b^2*Pi*csgn(I*((c*x+1)^2/(-c^2*x^2+1)-1))*csgn(I*((c*x+1)^2/(-c^2*x^2+1)-1)/(1+
(c*x+1)^2/(-c^2*x^2+1)))^2*arctanh(c*x)*ln(1+I*(c*x+1)/(-c^2*x^2+1)^(1/2))-1/2*I*d*b^2*Pi*csgn(I*((c*x+1)^2/(-
c^2*x^2+1)-1))*csgn(I*((c*x+1)^2/(-c^2*x^2+1)-1)/(1+(c*x+1)^2/(-c^2*x^2+1)))^2*arctanh(c*x)*ln(1-I*(c*x+1)/(-c
^2*x^2+1)^(1/2))-1/2*I*d*b^2*Pi*csgn(I/(1+(c*x+1)^2/(-c^2*x^2+1)))*csgn(I*((c*x+1)^2/(-c^2*x^2+1)-1)/(1+(c*x+1
)^2/(-c^2*x^2+1)))^2*arctanh(c*x)*ln(1+I*(c*x+1)/(-c^2*x^2+1)^(1/2))+1/2*I*d*b^2*Pi*csgn(I*((c*x+1)^2/(-c^2*x^
2+1)-1))*csgn(I/(1+(c*x+1)^2/(-c^2*x^2+1)))*csgn(I*((c*x+1)^2/(-c^2*x^2+1)-1)/(1+(c*x+1)^2/(-c^2*x^2+1)))*dilo
g(1-I*(c*x+1)/(-c^2*x^2+1)^(1/2))+1/2*I*d*b^2*Pi*csgn(I*((c*x+1)^2/(-c^2*x^2+1)-1))*csgn(I*((c*x+1)^2/(-c^2*x^
2+1)-1)/(1+(c*x+1)^2/(-c^2*x^2+1)))^2*arctanh(c*x)*ln(1+(c*x+1)^2/(-c^2*x^2+1))+1/2*I*d*b^2*Pi*csgn(I*((c*x+1)
^2/(-c^2*x^2+1)-1))*csgn(I/(1+(c*x+1)^2/(-c^2*x^2+1)))*csgn(I*((c*x+1)^2/(-c^2*x^2+1)-1)/(1+(c*x+1)^2/(-c^2*x^
2+1)))*dilog(1+I*(c*x+1)/(-c^2*x^2+1)^(1/2))-1/4*I*d*b^2*Pi*csgn(I*((c*x+1)^2/(-c^2*x^2+1)-1))*csgn(I/(1+(c*x+
1)^2/(-c^2*x^2+1)))*csgn(I*((c*x+1)^2/(-c^2*x^2+1)-1)/(1+(c*x+1)^2/(-c^2*x^2+1)))*polylog(2,-(c*x+1)^2/(-c^2*x
^2+1))+1/2*I*d*b^2*Pi*csgn(I*((c*x+1)^2/(-c^2*x^2+1)-1))*csgn(I/(1+(c*x+1)^2/(-c^2*x^2+1)))*csgn(I*((c*x+1)^2/
(-c^2*x^2+1)-1)/(1+(c*x+1)^2/(-c^2*x^2+1)))*arctanh(c*x)^2-1/2*I*d*b^2*Pi*csgn(I/(1+(c*x+1)^2/(-c^2*x^2+1)))*c
sgn(I*((c*x+1)^2/(-c^2*x^2+1)-1)/(1+(c*x+1)^2/(-c^2*x^2+1)))^2*arctanh(c*x)*ln(1-I*(c*x+1)/(-c^2*x^2+1)^(1/2))
+1/2*I*d*b^2*Pi*csgn(I/(1+(c*x+1)^2/(-c^2*x^2+1)))*csgn(I*((c*x+1)^2/(-c^2*x^2+1)-1)/(1+(c*x+1)^2/(-c^2*x^2+1)
))^2*arctanh(c*x)*ln(1+(c*x+1)^2/(-c^2*x^2+1))-1/2*I*d*b^2*Pi*csgn(I*((c*x+1)^2/(-c^2*x^2+1)-1)/(1+(c*x+1)^2/(
-c^2*x^2+1)))^3*arctanh(c*x)*ln(1+(c*x+1)^2/(-c^2*x^2+1))+1/4*I*d*b^2*Pi*csgn(I*((c*x+1)^2/(-c^2*x^2+1)-1))*cs
gn(I*((c*x+1)^2/(-c^2*x^2+1)-1)/(1+(c*x+1)^2/(-c^2*x^2+1)))^2*polylog(2,-(c*x+1)^2/(-c^2*x^2+1))-1/2*I*d*b^2*P
i*csgn(I*((c*x+1)^2/(-c^2*x^2+1)-1))*csgn(I*((c*x+1)^2/(-c^2*x^2+1)-1)/(1+(c*x+1)^2/(-c^2*x^2+1)))^2*dilog(1-I
*(c*x+1)/(-c^2*x^2+1)^(1/2))-1/2*I*d*b^2*Pi*csgn(I*((c*x+1)^2/(-c^2*x^2+1)-1))*csgn(I*((c*x+1)^2/(-c^2*x^2+1)-
1)/(1+(c*x+1)^2/(-c^2*x^2+1)))^2*dilog(1+I*(c*x+1)/(-c^2*x^2+1)^(1/2))-1/2*I*d*b^2*Pi*csgn(I/(1+(c*x+1)^2/(-c^
2*x^2+1)))*csgn(I*((c*x+1)^2/(-c^2*x^2+1)-1)/(1+(c*x+1)^2/(-c^2*x^2+1)))^2*arctanh(c*x)^2-1/2*I*d*b^2*Pi*csgn(
I*((c*x+1)^2/(-c^2*x^2+1)-1))*csgn(I*((c*x+1)^2/(-c^2*x^2+1)-1)/(1+(c*x+1)^2/(-c^2*x^2+1)))^2*arctanh(c*x)^2+d
*a^2*ln(c*x)+d*b^2*arctanh(c*x)^2-d*b^2*dilog(1+I*(c*x+1)/(-c^2*x^2+1)^(1/2))-d*b^2*dilog(1-I*(c*x+1)/(-c^2*x^
2+1)^(1/2))+1/2*d*b^2*polylog(3,-(c*x+1)^2/(-c^2*x^2+1))-2*d*b^2*polylog(3,(c*x+1)/(-c^2*x^2+1)^(1/2))-2*d*b^2
*polylog(3,-(c*x+1)/(-c^2*x^2+1)^(1/2))-1/2*d*b^2*polylog(2,-(c*x+1)^2/(-c^2*x^2+1))+1/2*I*d*b^2*Pi*csgn(I*((c
*x+1)^2/(-c^2*x^2+1)-1))*csgn(I/(1+(c*x+1)^2/(-c^2*x^2+1)))*csgn(I*((c*x+1)^2/(-c^2*x^2+1)-1)/(1+(c*x+1)^2/(-c
^2*x^2+1)))*arctanh(c*x)*ln(1-I*(c*x+1)/(-c^2*x^2+1)^(1/2))-1/2*I*d*b^2*Pi*csgn(I*((c*x+1)^2/(-c^2*x^2+1)-1))*
csgn(I/(1+(c*x+1)^2/(-c^2*x^2+1)))*csgn(I*((c*x+1)^2/(-c^2*x^2+1)-1)/(1+(c*x+1)^2/(-c^2*x^2+1)))*arctanh(c*x)*
ln(1+(c*x+1)^2/(-c^2*x^2+1))+1/2*I*d*b^2*Pi*csgn(I*((c*x+1)^2/(-c^2*x^2+1)-1))*csgn(I/(1+(c*x+1)^2/(-c^2*x^2+1
)))*csgn(I*((c*x+1)^2/(-c^2*x^2+1)-1)/(1+(c*x+1)^2/(-c^2*x^2+1)))*arctanh(c*x)*ln(1+I*(c*x+1)/(-c^2*x^2+1)^(1/
2))+d*a^2*c*x-d*a*b*dilog(c*x)-d*a*b*dilog(c*x+1)+d*b^2*arctanh(c*x)^2*ln(c*x)-d*b^2*arctanh(c*x)*ln(1-I*(c*x+
1)/(-c^2*x^2+1)^(1/2))-d*b^2*arctanh(c*x)*ln(1+(c*x+1)^2/(-c^2*x^2+1))-d*b^2*arctanh(c*x)*ln(1+I*(c*x+1)/(-c^2
*x^2+1)^(1/2))-d*b^2*arctanh(c*x)*polylog(2,-(c*x+1)^2/(-c^2*x^2+1))+2*d*b^2*arctanh(c*x)*polylog(2,(c*x+1)/(-
c^2*x^2+1)^(1/2))+d*b^2*arctanh(c*x)^2*ln(1+(c*x+1)/(-c^2*x^2+1)^(1/2))+d*b^2*arctanh(c*x)^2*ln(1-(c*x+1)/(-c^
2*x^2+1)^(1/2))+2*d*b^2*arctanh(c*x)*polylog(2,-(c*x+1)/(-c^2*x^2+1)^(1/2))-d*b^2*arctanh(c*x)^2*ln((c*x+1)^2/
(-c^2*x^2+1)-1)+1/2*I*d*b^2*Pi*csgn(I*((c*x+1)^2/(-c^2*x^2+1)-1)/(1+(c*x+1)^2/(-c^2*x^2+1)))^3*arctanh(c*x)^2+
1/2*I*d*b^2*Pi*csgn(I*((c*x+1)^2/(-c^2*x^2+1)-1...

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*d*x+d)*(a+b*arctanh(c*x))^2/x,x, algorithm="maxima")

[Out]

1/4*b^2*c*d*x*log(-c*x + 1)^2 + a^2*c*d*x + (2*c*x*arctanh(c*x) + log(-c^2*x^2 + 1))*a*b*d + a^2*d*log(x) - in
tegrate(-1/4*((b^2*c^2*d*x^2 - b^2*d)*log(c*x + 1)^2 + 4*(a*b*c*d*x - a*b*d)*log(c*x + 1) - 2*(b^2*c^2*d*x^2 +
 2*a*b*c*d*x - 2*a*b*d + (b^2*c^2*d*x^2 - b^2*d)*log(c*x + 1))*log(-c*x + 1))/(c*x^2 - x), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*d*x+d)*(a+b*arctanh(c*x))^2/x,x, algorithm="fricas")

[Out]

integral((a^2*c*d*x + a^2*d + (b^2*c*d*x + b^2*d)*arctanh(c*x)^2 + 2*(a*b*c*d*x + a*b*d)*arctanh(c*x))/x, x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} d \left (\int a^{2} c\, dx + \int \frac {a^{2}}{x}\, dx + \int b^{2} c \operatorname {atanh}^{2}{\left (c x \right )}\, dx + \int \frac {b^{2} \operatorname {atanh}^{2}{\left (c x \right )}}{x}\, dx + \int 2 a b c \operatorname {atanh}{\left (c x \right )}\, dx + \int \frac {2 a b \operatorname {atanh}{\left (c x \right )}}{x}\, dx\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*d*x+d)*(a+b*atanh(c*x))**2/x,x)

[Out]

d*(Integral(a**2*c, x) + Integral(a**2/x, x) + Integral(b**2*c*atanh(c*x)**2, x) + Integral(b**2*atanh(c*x)**2
/x, x) + Integral(2*a*b*c*atanh(c*x), x) + Integral(2*a*b*atanh(c*x)/x, x))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*d*x+d)*(a+b*arctanh(c*x))^2/x,x, algorithm="giac")

[Out]

integrate((c*d*x + d)*(b*arctanh(c*x) + a)^2/x, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (a+b\,\mathrm {atanh}\left (c\,x\right )\right )}^2\,\left (d+c\,d\,x\right )}{x} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a + b*atanh(c*x))^2*(d + c*d*x))/x,x)

[Out]

int(((a + b*atanh(c*x))^2*(d + c*d*x))/x, x)

________________________________________________________________________________________